3.9 Inverse Trigonometric Functions:

Each of the 6 trig functions is periodic and so not one-to-one on its whole domain. However by restricting the domain it is possible to make each trig function) one-to-one. \sin^{-1} : Where should we restrict sin to get an one-to-one function? Graph:

Therefore \sin^{-1} is defined on $[-\pi/2, \pi/2]$. Its graph is above. **Properties:**

- 1. $\sin^{-1}(\sin \theta) = \theta$ provided $-\pi/2 \le \theta \le \pi/2$
- 2. $\sin(\sin^{-1}(x)) = x$,
- 3. $\sin^{-1}(x)$ is defined for $-\pi/2 \le x \le \pi/2$.

4.
$$\frac{d}{dx}\sin^{-1}(x) =$$

Verify of Property 4: First of all $\sin^{-1}(x)$ is differentiable except at those points corresponding to where the derivative of $\sin \theta$ is 0: $\cos \theta = 0$. Since $-\pi/2 \le \theta \le \pi/2$ $\theta = \pm \pi/2$ corresponding to $x = \pm 1$. So $\sin^{-1}(x)$ is differentiable -1 < x < 1 (not $x = \pm 1$). Compute it: By the chain rule

$$\frac{d}{dx}\sin(\sin^{-1}(x)) = \frac{d}{dx}x$$
$$\cos(\sin^{-1}(x))\frac{d}{dx}\sin^{-1}(x) = 1$$

For $-\pi/2 \le \theta \pi/2$, $\cos \theta = \sqrt{1 - \sin^2 \theta}$ so that $\cos(\sin^{-1}(x)) = \sqrt{1 - x^2}$

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$

-1 < x < 1.

Example: Differentiate $\sin^{-1}(x/2)$. $\tan^{-1}(x)$: Restrict $\tan \theta$ to $-\pi/2 < \theta < \pi$. Graph: Therefore \tan^{-1} is defined on $(-\pi/2, \pi/2)$. Its graph is above. **Properties:**

1. $\tan^{-1}(\tan \theta) = \theta$ provided $-\pi/2 < \theta < \pi/2$

2.
$$\tan(\tan^{-1}(x)) = x$$
,

- 3. $\tan^{-1}(x)$ is defined for all x.
- 4. $\frac{d}{dx}\tan^{-1}(x) = \underline{\qquad}$

Verify of Property 4: First of all $\tan^{-1}(x)$ is differentiable except at those points corresponding to where the derivative of $\tan \theta$ is 0: $(\sec \theta)^2 = 0$. There are no such θ so that $\tan^{-1}(x)$ is differentiable for all x (not $x = \pm 1$). Compute it: By the chain rule

$$\frac{d}{dx}\tan(\tan^{-1}(x)) = \frac{d}{dx}x$$
$$(\sec(\tan^{-1}(x)))^2 \frac{d}{dx}\tan^{-1}(x) = 1$$
$$1 + (\tan(\tan^{-1}(x)))^2 \frac{d}{dx}\tan^{-1}(x) = 1$$

because $(sec\theta)^2 = 1 + (\tan \theta)^2$. Therefore

$$\frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2}$$

Example: Differentiate $y = \arctan(x/3)$

 $\cos^{-1}(x)$: Restrict $\cos \theta$ to $0 \le \theta \le \pi$ so that it is one-to-one. Graph:

Therefore \cos^{-1} is defined on $[0, \pi]$. Its graph is above. **Properties:**

1. $\cos^{-1}(\cos \theta) = \theta$ provided $0 \le \theta \le \pi$

2.
$$\cos(\cos^{-1}(x)) = x$$
,

3. $\cos^{-1}(x)$ is defined only for $-1 \le x \le 1$.

4.
$$\frac{d}{dx}\cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}}$$

$\sec^{-1}(x)$ **Properties:**

- 1. $\sec^{-1}(\sec\theta) = \theta$ provided $0 \le \theta \le \pi, \ \theta \ne \pi/2$
- 2. $\sec(\sec^{-1}(x)) = x$, for |x| > 1.
- 3. $\cos^{-1}(x)$ is defined only for |x| > 1.

4.
$$\frac{d}{dx} \sec^{-1}(x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

Property 4 follows by differentiating $\sec(\sec^{-1} x) = x$

$$\frac{d}{dx}\sec(\sec^{-1}x) = \frac{dx}{dx} = 1, \ \sec(\sec^{-1}x)\tan(\sec^{-1}(x)) = 1$$

and of course $\sec(\sec^{-1}(x)) = x$ whereas $\tan(\sec^{-1}(x))$ we can evaluate from the identity $(\tan \theta)^2 = \sec(\theta)^2 - 1$ and so if $\theta = \sec^{-1}(x) \tan \sec^{-1} x = x^2 - 1$ and of course $\tan \theta > 0$ for $0 \le \theta < \pi/2$ and $\tan \theta < 0$ for $\pi/2 < \theta \le \pi$

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}$$